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Abstract

This paper presents multilevel iterative schemes for solving the multigroup Boltzmann trans-
port equations (BTEs) with parallel calculation of group equations. They are formulated
with multigroup and grey low-order equations of the Second-Moment (SM) method. The
group high-order BTEs and low-order SM (LOSM) equations are solved in parallel. To
further improve convergence and increase computational efficiency of algorithms Anderson
acceleration is applied to inner iterations for solving the system of multigroup LOSM equa-
tions. Numerical results are presented to demonstrate performance of the multilevel iterative
methods.

Keywords: particle transport, Boltzmann equation, multigroup problems, iterative
methods, parallel algorithms, Anderson acceleration

1. Introduction

The steady-state energy-dependent particle transport problems are formulated by the
multigroup Boltzmann transport equation (BTE) given by

Ω·∇ψg(x,Ω)+σt,g(x)ψg(x,Ω)=
1

4π

G∑
g′=1

σs,g′→g(x)

∫
4π

ψg′(x,Ω
′)dΩ′+

1

4π
Qg(x) , g ∈ G , (1)

where G = {1, . . . , G}. Here standard notation is used. This equation models interaction of
particles with matter in a physical system with absorption and isotropic scattering. It has
application for linear transport problems of various kind of particles, for instance, neutrons,
electrons, and photons. In nonlinear thermal radiative transfer (TRT) problems, the time-
dependent BTE is coupled with the material energy balance (MEB) equation. A group
of methods for TRT is based on linearization of the system of equations on a time step.
This reduces the TRT problem to the BTE equation of the form (1) with pseudo-scattering
[1, 2, 3].
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Numerical transport algorithms for high performance computers use a variety of ap-
proaches to achieve efficient parallel computations for solving the linear BTE [4, 5]. A
natural element of parallel algorithms is to perform calculations of group equations in par-
allel taking advantage of the particle transport problem’s multigroup structure. This can
be interpreted as problem decomposition over one element of the phase space, namely, par-
ticle energy. Efficient Diffusion Synthetic Acceleration (DSA) algorithms for multigroup
transport problems can be formulated with decoupled group equations [6].

In this paper, we describe new iterative methods for multigroup transport problems which
solve the group equations in parallel. They are formulated on the basis of low-order equations
of the Second-Moment (SM) method and nonlinear projective approach [7, 8, 9]. The low-
order SM (LOSM) equations are similar to those of the DSA method [8]. The main difference
is that the LOSM equations are formulated for the angular moments of the solution, while
the low-order DSA equations are defined for the iterative corrections of the moments. Thus,
computational tools based on the DSA can be modified to use the SM method. We present a
nonlinear multilevel SM (MLSM) method that consists of (i) multigroup high-order BTEs for
group angular fluxes, (ii) multigroup LOSM equations for group scalar fluxes and currents,
and (iii) grey LOSM equations for total scalar flux and current. The scattering terms in both
group high-order and LOSM equations are formulated in a nonlinear form. The effective
grey LOSM problem is defined by means of cross sections averaged with the iterative group
LOSM solution. The group high-order BTEs and group LOSM equations are solved in
parallel at corresponding stages of iteration algorithms. The group-to-group scattering terms
in the group LOSM equations are defined with lagged iterative solution. In this case both
downscattering and upscattering of particles have a similar effect on convergence of inner
iterations with respect to energy groups. Iterations of this kind can yield slow convergence
without acceleration. The convergence rate of inner iterations over the system of multigroup
low-order equations is improved with use of the grey LOSM equations. To further accelerate
convergence and increase computational efficiency of parallel algorithms we apply Anderson
acceleration to the inner multigroup iterations [10].

The reminder of the paper is organized as follows. In Sec. 2, the MLSM method is
formulated. In Sec. 3, we present the MLSM method with Anderson Acceleration of inner
iterations over multigroup LOSM equations. The numerical results are presented in Sec. 4.
We conclude with a discussion in Sec. 5.

2. Multilevel Second-Moment Method

We consider transport problems in 1D slab geometry. The iteration scheme of the MLSM
method with groups solved in parallel is presented in Algorithm 1, where ` is the index of
outer transport iterations, k is the index of the inner iterations between multigroup and
grey LOSM equations, and s is the index of the innermost iterations for solving multigroup
LOSM equations. kmax and smax are the maximum numbers of the corresponding inner
iterations.
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` = −1, ψ
(0)
g = const, P

(0)
g = 0, P (0) = 0

while ||φ(`) − φ(`−1)|| > ε do
` = `+ 1
if ` > 0 then

φ
(`−1)
g ⇒ σ̄

(`−1)
s,g , g ∈ G

for all g ∈ G in parallel do
Level 1: Solve the high-order transport equation (Eqs. (2)) for group g

⇒ ψ
(`)
g

ψ
(`)
g ⇒ P

(`)
g for g ∈ G, P (`)

k = 0
while k ≤ kmax do

k = k + 1
s = 0
while s ≤ smax do

s = s+ 1

φ
(s−1,k,`)
g , φ(k−1,`) ⇒ ζ(s−1,k−1,`)

for all g ∈ G in parallel do

Level 2: Solve the LOSM equation (Eqs. (3)) for group g ⇒ φ
(s,k,`)
g ,

J
(s,k,`)
g

φ
(k,`)
g ← φ

(smax,k,`)
g , J

(k,`)
g ← J

(smax,k,`)
g

φ
(k,`)
g , J

(k,`)
g ⇒ σ̄

(k,`)
a , σ̄

(k,`)
t , η̄(k,`)

Level 3: Solve the grey LOSM equations (Eqs. (5)) ⇒ φ(k,`), J (k,`)

φ
(`)
g ← φ

(kmax,`)
g , J

(`)
g ← J

(kmax,`)
g , φ(`) ← φ(kmax,`) , J (`+1) ← J (kmax,`)

Algorithm 1: The MLSM method with group equations solved in parallel

The multilevel hierarchy of equations of the MLSM method is defined as follows.

• Level 1. The multigroup high-order transport equations with decoupled groups are
given by

µ
∂ψ

(`)
g

∂x
+ σt,gψ

(`)
g =

1

2
σ̄(`−1)
s,g φ(`−1) +

1

2
Qg , where σ̄(`−1)

s,g =

∑G
g′=1 σs,g′→gφ

(`−1)
g′∑G

g′=1 φ
(`−1)
g′

. (2)

The right-hand side (RHS) of the BTE is transformed by means of (i) the total scalar
flux that is the solution of the grey LOSM problem and (ii) averaged cross section σ̄s,g
defined with the group scalar fluxes obtained from the multigroup LOSM equations
[9].
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• Level 2. The multigroup LOSM equations are defined by

dJ
(s,k,`)
g

dx
+
(
σt,g − σs,g→g

)
φ(s,k,`)
g = ζ(s−1,k−1,`)

G∑
g′=1

g′ 6=g

σs,g′→gφ
(s−1,k,`)
g′ +Qg , (3a)

1

3

dφ
(s,k,`)
g

dx
+ σt,gJ

(s,k,`)
g =

dP
(`)
g

dx
, (3b)

where

ζ(s−1,k−1,`) =
φ(k−1,`)∑G

g′=1 φ
(s−1,k,`)
g′

, P (`)
g =

∫ 1

−1

(1

3
− µ2

)
ψ(`)
g dµ . (4)

The RHS of Eq. (3) is formulated using the multiplicative correction factor ζ that is
defined by the solution of the multigroup and grey LOSM equations [9, 11]. This form
of the RHS introduces nonlinearity in the multigroup LOSM equations.

• Level 3. The grey LOSM equations have the following form:

dJ (k,`)

dx
+ σ̄(k,`)

a φ(k,`) = Q , (5a)

1

3

dφ(k,`)

dx
+ σ̄

(k,`)
t J (k,`) + η̄(k,`)φ(k,`) =

dP (`)

dx
, (5b)

where

σ̄(k,`)
a =

∑G
g=1 σa,gφ

(k,`)
g∑G

g=1 φ
(k,`)
g

, σ̄
(k,`)
t =

∑G
g=1 σt,g

∣∣∣J (k,`)
g

∣∣∣∑G
g=1

∣∣∣J (k,`)
g

∣∣∣ , (6)

η̄((k,`) =

∑G
g=1

(
σt,g − σ̄t

)
J
(k,`)
g∑G

g=1 φ
(k,`)
g

, P (`) =
G∑
g=1

P (`)
g , Q =

G∑
g=1

Qg . (7)

The high-order BTE (Eq. (2)) is discretized by the linear-discontinuous (LD) finite ele-
ment method. The spatial discretization of the multigroup and grey LOSM equations are
consistent with the LD transport scheme [12].

3. The MLSM Method with Anderson Acceleration

3.1. Anderson Acceleration

Let us consider a general equation of the following form:

ϕ = A(ϕ) , ϕ ∈ Rn (8)

that is solved with the fixed-point iterations (FPI)

ϕ(s+1) = A
(
ϕ(s)

)
. (9)
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The residual for the sth iterate ϕ(s) is defined by

r(ϕ(s)) = A(ϕ(s))−ϕ(s) . (10)

Anderson acceleration is an iterative algorithm that applies an extrapolation based on a
linear combination of iterates and the values of A. The coefficients of the linear combination
are determined in such a way that they minimize the linear combination of the corresponding
sequence of residuals. Algorithm 2 presents the iteration scheme of Anderson acceleration
[10, 13, 14]. The parameter m defines the maximum algorithmic depth. The set of mixing
parameters βs are used for relaxation. We refer to this iteration algorithm as AA(m).

Define ϕ(0)

ϕ(1) = A(ϕ(0)) , r(ϕ(0)) = A(ϕ(0))−ϕ(0)

for s = 1,2,... do
ms = min(m, s)

r(ϕ(s)) = A(ϕ(s))−ϕ(s)

minαs

∣∣∣∣∑ms

j=0 α
s
jr(ϕ(s−ms+j))

∣∣∣∣
2

s. t.
∑ms

j=0 α
s
j = 1 .

ϕ(s+1) = (1− βs)
∑ms

j=0 α
s
jϕ

(s−ms+j) + βs
∑ms

j=0 α
s
jA
(
ϕ(s−ms+j)

)
Algorithm 2: Anderson acceleration method for solving ϕ = A(ϕ)

In this study, we use AA(1) with βs = 1 that converges r-linearly in `2-norm provided
that the coefficients αsj are bounded [14]. This scheme defines the next iterate as follows:

ϕ(s+1) = αs0A(ϕ(s−1)) + αs1A(ϕ(s)) = αs0ϕ
(s−1) + αs1ϕ

(s) + αs0r(ϕ(s−1)) + αs1r(ϕ(s)) , (11)

where αs = (αs0, α
s
1)
> solves

min
αs
||αs0r(ϕ(s−1)) + αs1r(ϕ(s))

)
||2 s. t. αs0 + αs1 = 1 . (12)

To determine αs0, we apply the following condition:(
||r(ϕ(s)) + αs0

(
r(ϕ(s−1))− r

(
ϕ(s))

)
||22
)′
α0

= 0 . (13)

This yields

αs0 =

∑n
i=1 r

(s)
i

(
r
(s)
i − r

(s−1)
i

)∑n
i=1

(
r
(s−1)
i − r(s)i

)2 , (14)

where {r(s)i }ni=1 = {ri(ϕ(s))}ni=1 .

3.2. MLSM Algorithm with Anderson Acceleration of Innermost Iterations

We apply AA(1) to the inner iterations of the multigroup LOSM equations at Level 2
(see Sec. 2). The vector of the solution ϕ = {ϕg}Gg=1 consists of ϕg defined by the grid
functions of φg and Jg. The residual is given by r(ϕ) = {rg}Gg=1, where rg(ϕ) = Fgϕ and Fg
is the operator of the discretized LOSM equations in the group g. The iteration scheme for
the MLSM method with AA(1) for the inner multigroup iterations is presented in Algorithm
3. Hereafter we refer to this algorithm as the MLSM-AA(1) method.
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. . .

k = 0, φ
(0,`)
g =

∫ 1

−1 ψ
(`)
g dµ, J

(0,`)
g =

∫ 1

−1 µψ
(`)
g dµ

while k ≤ kmax do
k = k + 1, s = 0

φ̂
(0,k,`)
g = φ

(k−1,`)
g , Ĵ

(0,k,`)
g = J

(k−1,`)
g , φ

(0,k,`)
g = φ

(k−1,`)
g

Calculate residual r(ϕ̂(0,k,`)) of the multigroup LOSM equations
while s ≤ smax do

s = s+ 1

φ
(s−1,k,`)
g , φ(k−1,`) ⇒ ζ(s−1,k−1,`)

for all g ∈ G in parallel do

Level 2: Solve the LOSM equation for group g ⇒ φ̂
(s,k,`)
g , Ĵ

(s,k,`)
g

Calculate residual r(ϕ̂(s,k,`+1)) of the multigroup LOSM equations

r(ϕ̂(s,k,`)) , r(ϕ̂(s−1,k,`)) ⇒ α0 , α1

ϕ(s,k,`) = α0ϕ̂
(s−1,k,`) + α1ϕ̂

(s,k,`) + α0r(ϕ̂(s−1,k,`)) + α1r(ϕ̂(s,k,`))

ϕ(s,k,`) ⇒ φ
(s,k,`)
g , J

(s,k,`)
g

. . .

. . .
Algorithm 3: The MLSM-AA(1) method with group equations solved in parallel.

4. Numerical Results

Test 1. This is a 10-group problem for a slab 0 ≤ x ≤ 32 [6]. The cross sections
are given in Table A.6 (see Appendix A). The groups are coupled with each other due
to downscattering and upscattering. The boundary conditions are vacuum. The external
source is constant and Qg = 1 ∀g. The spatial mesh is uniform with 128 cells. There are 16
angular directions. The double S8 Gauss-Legendre quadrature set is used. The convergence
criterion is ε = 10−9. Table 1 shows the measure of connection strength of groups given by
[15]

Sgg′ =
agg′

maxg′′ 6=g(agg′′)
, agg′ = σs,g′→g . (15)

In this test, most of groups are strongly connected with other groups. The group scattering
is high and in the range 0.9 ≤ cg ≤ 0.9999 (see Table A.6). The target number of transport
iterations in Test 1 equals 15.

Table 2 shows the numbers of outer transport iterations (Nt) and numerically estimated
spectral radii (ρnum) for the MLSM and MLSM-AA(1) methods based on the rates of conver-
gence during last iterations. The residual histories for the methods are presented in Figures
1a. The Fourier analysis in continuous form yields that the value of theoretical spectral
radius (for an infinite-medium problem) of source iterations (SI) in this test is ρSIth = 0.96.
The full DSA (FDSA) method has ρFDSAth = 0.21 [6]. The study of the grey DSA (GDSA)
and decoupled DSA (DDSA) showed that in this problem ρGDSAnum = 0.55 and ρDDSAnum = 0.26
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Table 1: Connection strength of groups (Sgg′) in Test 1

g \ g′ 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 1. 0 0 0 0 0 0 0 0 0
3 0.71 1. 0 0 0 0 0 0 0 0
4 1. 0.53 0.36 0 0 0 0 0 0 0
5 1. 0.21 0.48 1. 0 0 0 0 0 0
6 0 0.78 0.64 1. 0.81 0 0 0 0 0
7 0 0 0.26 0.09 0.20 0.48 0 1. 0.22 0.23
8 0 0 0 0.91 0.11 0.25 0.13 0 1. 0.88
9 0 0 0 0 0.39 0.29 1. 0.78 0 0.62
10 0 0 0 0 0 0.41 1. 0.55 0.68 0

Table 2: Test 1

method MLSM MLSM-AA(1)

kmax 1 2 1

smax 1 2 1 1 2

Nt 16 15 15 15 15
ρnum 0.20 0.20 0.19 0.20 0.20
Mlo 2 3 4 2 3

[6].
On each transport iteration, the MLSM algorithm executes kmaxsmax parallel solves of

LOSM equations in groups and kmax solves of grey LOSM equations. Thus, it performs
Mlo = kmax(smax + 1) low-order solves where each solve of group LOSM equations is ac-
counted as one because of parallel execution of groups. This measure can be used to evaluate
the algorithm efficiency for the given number of transport iterations.

The results show that MLSM with kmax = 1 and smax = 1 converges fast. Just one
extra cycle over group LOSM equations (smax = 2) leads to the target number of transport
iterations (Nt = 15). The estimated spectral radius of this algorithm is ρnum = 0.2. This
version of the algorithm has the smaller number of cycles of low-order solves (Mlo = 3)
compared to the algorithm with kmax = 2 and smax = 1. The MLSM-AA(1) method slightly
improves convergence in this test. This algorithm with kmax = 1 and smax = 1 shows the
best performance in this test. It converges in Nt = 15 requiring Mlo = 2.

Test 2. This problem is similar to Test 1. It is defined with the moderator material
from C5G7 benchmark with 7-group cross sections [16]. Table A.7 shows the cross section
(see Appendix A). The connection strength of groups is presented in Table 3. The groups
are strongly connected to neighbouring groups. The connection to distant groups is very
weak. The group scattering is very high in all groups (0.985949 ≤ cg ≤ 0.999961). The
target number of outer transport iterations is equal to 15.
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Table 3: Connection strength of groups (Sgg′) in Test 2

g \ g′ 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0
2 1. 0 0 0 0 0 0

3 5.5×10−3 1. 0 0 0 0 0

4 1.7×10−5 2.8×10−3 1. 0 3.2×10−4 0 0

5 1.3×10−7 1.2×10−4 4.1×10−2 1. 0 5.3×10−3 0

6 0 1.5×10−5 5.2×10−3 1.3×10−1 1. 0 2.6×10−1

7 0 2.0×10−6 9.4×10−4 2.3×10−2 1.1×10−1 1. 0

Table 4: Test 2: MLSM

kmax 1 2 3 4 5

smax 1 2 3 4 5 6 1 2 3 4 1 2 3 1 2 1

Nt 31 26 22 20 18 18 26 20 16 15 22 16 15 20 15 15
ρnum 0.45 0.38 0.31 0.28 0.22 0.26 0.38 0.29 0.22 0.20 0.33 0.22 0.20 0.29 0.20 0.20
Mlo 2 3 4 5 6 7 4 6 8 10 6 9 12 8 12 10

Table 5: Test 2: MLSM-AA(1)

kmax 1 2 3

smax 1 2 3 1 2 1

Nt 31 18 17 18 15 15
ρnum n/a 0.27 0.26 n/a 0.20 0.20
Mlo 2 3 4 4 6 6

The numbers of outer transport iterations and numerically estimated spectral radii for
the MLSM and MLSM-AA(1) methods are listed in Tables 4 and 5, respectively. The
residual histories for both methods are presented in Figures 1b-1d. The theoretical spectral
radii of SI and FDSA are ρSIth = 0.98 and ρFDSAth = 0.22, respectively. The analysis of GDSA
and DDSA showed that in this problem ρGDSAnum = 0.67 and ρDDSAnum = 0.32 [6].

The results show that the MLSM algorithm with kmax = 2 and smax = 4 converges in
Nt = 15 requiring Mlo = 10 per transport iteration. This method with kmax = 5 with only
smax = 1 also converges in Nt = 15 and needs the same number Mlo per transport iteration.
Application of Anderson acceleration significantly affects permeance of the MLSM method in
this test. The most efficient is the MLSM-AA(1) algorithm with kmax = 2 and smax = 3 that
executes Mlo = 6 per transport iteration. This algorithm converges steadily with estimated
spectral radius ρnum = 0.20. We note that the MLSM-AA(1) method with kmax = 1 and
smax = 1 showed irregular convergence behavior. This is the effect of using in Anderson
acceleration just one residual of the solution of the group LOSM equations for s = 1 and the
residual of the initial guess (s = 0) that is the high-order solution from the transport sweep.
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(a) Test 1 (b) Test 2, MLSM, kmax = 1

(c) Test 2, MLSM, kmax = 2, 3, 4, 5 (d) Test 2, MLSM-AA(1), kmax = 1, 2, 3

Figure 1: Residual histories.

The trace of this effect can be also noticed in convergence behaviour of the MLSM-AA(1)
method with kmax = 2 and smax = 1.

5. Conclusions

We developed new multilevel iterative methods for fixed-source multigroup particle trans-
port problems that can be applied for parallel computations. Numerical results are promis-
ing. They show that the algorithms accelerate iterative convergence and effectively solve
multigroup test problems with down- and upscattering as well as with high scattering ra-
tios in groups. More analysis is needed to study properties of MLSM iterative algorithms.
Further work will include extension to multi-D geometries and application of more general
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version of Anderson acceleration. This kind of transport algorithms for parallel computa-
tions can also be developed on the basis of the quasidiffusion (VEF) method [9, 12].
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Appendix A. Cross Section Data

Table A.6: Cross section data for Test 1 [6]

g 1 2 3 4 5 6 7 8 9 10

σt,g 2.49756 2.01650 1.51992 1.67388 2.36661 1.50008 2.37543 2.36241 2.04640 1.59740
cg 0.979581 0.944816 0.952295 0.926035 0.978471 0.9 0.987210 0.9999 0.904252 0.966192

g̃ σs,1→g̃ σs,2→g̃ σs,3→g̃ σs,4→g̃ σs,5→g̃ σs,6→g̃ σs,7→g̃ σs,8→g̃ σs,9→g̃ σs,10→g̃

1 0.835282 0 0 0 0 0 0 0 0 0
2 0.401686 0.566521 0 0 0 0 0 0 0 0
3 0.404298 0.569454 0.420634 0 0 0 0 0 0 0
4 0.498922 0.264139 0.179242 0.0828011 0 0 0 0 0 0
5 0.306376 0.0657747 0.148397 0.307318 1.30088 0 0 0 0 0
6 0.439338 0.362807 0.564376 0.456018 0.0715262 0 0 0 0 0
7 0 0 0.336331 0.122044 0.259295 0.623241 0.812409 1.28728 0.278371 0.301517
8 0 0 0 0.473528 0.0566290 0.128925 0.0676741 0.123057 0.518149 0.457140
9 0 0 0 0 0.242843 0.180473 0.622078 0.485474 0.483321 0.386770
10 0 0 0 0 0 0.345904 0.842890 0.466367 0.570623 0.397965

Table A.7: Cross section data for Test 2 [16]

g 1 2 3 4 5 6 7

σt,g 0.159206 0.412970 0.590310 0.584350 0.718000 1.25445 2.65038
cg 0.996225 0.999961 0.999429 0.996679 0.992003 0.988042 0.985949

g̃ σs,1→g̃ σs,2→g̃ σs,3→g̃ σs,4→g̃ σs,5→g̃ σs,6→g̃ σs,7→g̃

1 4.44777×10−2 0 0 0 0 0 0
2 1.134×10−1 2.82334×10−1 0 0 0 0 0
3 7.2347×10−4 1.2994×10−1 3.45256×10−1 0 0 0 0
4 3.7499×10−6 6.234×10−4 2.2457×10−1 9.10284×10−2 7.1437×10−5 0 0
5 5.3184×10−8 4.8002×10−5 1.6999×10−2 4.1551×10−1 1.39138×10−1 2.2157×10−3 0
6 0 7.4486×10−6 2.6443×10−3 6.3732×10−2 5.1182×10−1 6.99913×10−1 1.3244×10−1

7 0 1.0455×10−6 5.0344×10−4 1.2139×10−2 6.1229×10−2 5.3732×10−1 2.4807
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